Physiker haben einen optischen Spiegel entwickelt, der aus nur wenigen hundert Atomen besteht. Es ist der leichteste Spiegel der Welt und der leichteste überhaupt vorstellbare. Er ist nur wenige zehn Nanometer dick und damit tausend Mal dünner als ein menschliches Haar. Die Spiegelung darin ist jedoch so stark, dass man sie mit dem bloßen Auge wahrnehmen könnte.
Physiker am Max-Planck-Institut für Quantenoptik (MPQ) haben den denkbar leichtesten Spiegel entwickelt. Das neuartige Metamaterial besteht aus einer einfach strukturierten Schicht aus nur wenigen hundert identischen Atomen. Die Atome sind in einem zweidimensionalen optischen Gitter aus interferierenden Laserstrahlen angeordnet. Bisher ist der Spiegel weltweit einmalig. Die Ergebnisse sind die ersten experimentellen Beobachtungen ihrer Art in dem noch neuen Forschungsfeld zu Subwellenlängen-Quantenoptik mit geordneten Atomen. Die Arbeit wurde im Fachblatt Nature vorgestellt.
Der Spiegel arbeitet mit identischen Atomen, die in einem zweidimensionalen Feld zu einem periodischen Viereckmuster angeordnet sind wobei der Abstand zwischen den Atomen kleiner ist, als deren optische Übergangswellenlänge. Beides sind typische und notwendige Merkmale von Metamaterialien. Metamaterialien sind künstlich erschaffene Strukturen mit spezifischen Eigenschaften, die natürlicherweise kaum vorkommen. Sie erhalten ihre Eigenschaften nicht durch ihr Material, sondern durch die spezielle Struktur, in der sie angelegt werden.
Die beiden Eigenschaften – das periodische Muster und die Sub-Wellenlänge – sowie ihr gegenseitiges Zusammenspiel bilden den grundlegenden Mechanismus des neuartigen optischen Spiegels: Auf der einen Seite unterdrücken das regelmäßige Muster und die atomaren Abstände in Subwellenlänge beide ein diffuses Streuen des Lichts und bündeln die Reflexion stattdessen in einen gerichteten und stetigen Lichtstrahl. Auf der anderen Seite sorgt der vergleichsweise nahe aber diskrete Abstand zwischen den Atomen dafür, dass ein einfallendes Photon mehr als einmal zwischen den Atomen hin- und her prallt, bevor es zurückreflektiert wird. Beide Effekte – die unterdrückte Brechung des Lichts und das Hin- und Herfedern der Photonen – führen zu einer „verstärkten kooperativen Antwort an das externe Feld“, in anderen Worten: einer sehr starken Reflektion.
Weitere Informationen finden Sie hier.
Bild: Max-Planck-Institut für Quantenoptik